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In this paper methods are described for the solution of certain sparse linear systems with a 
non-symmetric matrix. The power of these methods is demonstrated by extensive numerical 
experiments. Application of the methods is limited to problems where the matrix has only 
eigenvalues with positive real part. An important class of this type of matrix arises from 
discretisation of second order partial differential equations with first order derivative terms. 

1. INTRODUCTION 

When an elliptic selfadjoint partial differential equation is discretised over some 
region, this results in a linear system Ax = b, where A is a symmetric matrix. 

Efficient algorithms to solve this type of equation iteratively have been described 
by Axelsson [I], Concus et al. 131, Meijerink and van der Vorst [15, I6] and many 
others. 

Another class of problems arises when the partial differential equation includes 
first order derivatives. Discretisation in this case yields a linear system with a non- 
symmetric matrix. These problems are much more diflicult to solve and much 
research has been done and is currently going on to develop efficient algoritb~~. 
Algorithms have been published by Varga [20], Stone [ 181, Kershaw [I I], 
Manteuffel fI2, 131, Paige [17], Concus and Golub [4], Widlund [21], a-o. 

Manteuffel has compared his version of Tchebycheff Iteration to the 
bidiagonalisation method of Paige [ 171 and the conjugate gradient method in a form 
as proposed by Kershaw [ 1 I]. From this comparison Manteuffel’s method seems to 
be the most promising one. 

In this paper we consider the use of preconditioning techniques in order to im 
the efficiency of the Tchebycheff Iteration, which is briefly outlined in Section 3. 

Some specific preconditionings, including a Fast Poisson Solver and incomplete 
Crout and Choleski decompositions, are discussed in Section 4. Certain ~~stab~l~t~ 
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problems in the incomplete Crout decomposition can be overcome avoiding the 
necessity of partial pivoting. 

From the numerical experiments described in Section 5 it appears that the use of 
an incomplete Crout decomposition as a preconditioning (eventually with 
modification) for the Tchebycheff Iteration leads to highly competitive iterative 
methods. This is even more the case if we make use of implementation ideas of 
Eisenstat [5] for preconditioned conjugate gradients, which can be easily adapted to 
the preconditioned conjugate gradients, which can be easily adapted to the precon- 
ditioned Tchebycheff Iteration. 

2. DESCRIPTION OF A CLASS OF NON-SYMMETRIC MATRICES 

In the following sections we often refer specifically to the important class of non- 
symmetric matrices that arises from 5point difference discretisation of second order 
PDEs like: 

-(Du:): - (Eu;); + Gu: + Hu; + Cu = F, (2.1) 

defined on a rectangular region R in the (x, y)-plane, with D(x,y) > 0, E(x, y) > 0 
and C(x, y) > 0 for x, y E: R. 

Equation (2.1), except for the part Gu: + Hai, can be discretised in such a way 
that the resulting matrix is a symmetric positive definite M-matrix (see Varga [20]). 
The first derivative terms Gu: + Hu$ can be approximated by either central 
differences or backward/forward differences. If G = G(y) and H = H(x) then they 
contribute to the final discretisation matrix by a skew-symmetric matrix when central 
differences are used. 

The final linear system resulting from the discretisation of (2.1) is denoted by 
Ax = b, where A has order nm and appears as in Fig. 1. 

A = 

FIGURE 1 

P-2) 
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3. THE TCHEBYCHEFF ITERATIQN 

In this section a short overview of the Tchebycheff Iteration for bob-symmetric 
linear systems is presented. For more detailed information one is referred to 
Manteuffel [ 121. 

The basic iteration formula is given by 

X k+,=-akAxkt(l tPk)xk-Pkxk.-~takb. (3.1) 

Manteuffel [ 121 shows that this iteration converges to the solution of Ax = b if the 
spectrum of A can be enclosed in an ellipse in the right half plane. 

The iteration parameters are defined in terms of parameters of this ellipse. Let 
d - c and d t c be the foci of the ellipse, c eventually complex; then ak and ,Bk are 
defined by 

where Tk(z) = cos(k arccos(z)), the kth Tchebycheff polynomial. The constants d and 
c should be chosen to define a family of ellipses containing the ellipse that encloses 
the spectrum of A, for which the rate of convergence Y, (see formula (3.4)) is 
minimal. This leads to the following computational scheme. 

Given x,, define 

r. = b -Axe, 

1 
PO=---0, d 

2 
ao=-, 

d 

Then 

xi=xi-1+ Pi-13 

ri=b-Axiel, 

ai= (Cl- (+)I ai-l)-‘, 

/Ii = dai - 1, 

Pi=airi +PiPi-15 

(3.3.1) 

(3.32) 

i = 1, 2, 3 ,..” . (3.3.3) 

(3.3.4) 

(3.3.5) 



4 HENK A.VAN DER VORST 

FIG. 2. Iteration parameters. 

The asymptotic convergence factor for this iterative Tchebycheff method is given by 

(3.4) 

where d is the center of the ellipse, c is the focal distance and a is the length of the 
axis in the x-direction (see Fig. 2). An adaptive procedure in which the values of d 
and c are estimated dynamically has been proposed by Manteuffel [12, 131. 

4. PRECONDITIONINGS FOR THE TCHEBYCHEFF ITERATION 

In order to improve the efficiency of the algorithm given in Section 3 one may 
consider the use of a non-singular preconditioning matrix K and solve the equation 
KAx =Kb. One hopes to be able to construct a preconditioning matrix so that the 
rate of convergence improves so much, that the total amount of work decreases 
taking into account the additional work required for the preconditioning. 

Note that the use of a preconditioning only affects the scheme (3.3) insofar as the 
residual yi now has to be computed from yi = K(b - Axi). For the algorithm to 
converge it is necessary that all eigenvalues are in the right half plane, i.e., all eigen- 
values of KA should have positive real part. We will now present a number of 
succcessful preconditionings. 

4~1 Inverse of Symmetric Part 
If A = A4 + N, where M is symmetric positive definite and N = -NT, then it is well 

known that all eigenvalues of M-‘A have positive real part 1.0. If for given vectors x, 
the matrix vector product M-ix can be generated efficiently, e.g., by a Fast Poisson 
Solver, then the operator M-’ can be used as a preconditioning. 

4.2. Approximate Inverse of Symmetric Part 
If computation of M-ix becomes too inefficient, one might consider the use of an 
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incomplete Choleski decomposition [ 151 of the symmetric part, for which we give the 
following result. 

THEOREM 1. if A = M + N, M a symmetric M-matrix, N = -NT, and is an 
incomplete Choleski decomposition of M, then all eigenvalues of K-IA have positive 
real part. 

ProaS, We write the incomplete Choleski decomposition as K = LLT. The matrix 
K-‘A has the same set of eigenvalues as L-‘AL-*. The latter matrix can be written 
X3 

,J-‘AL-T zL-‘ML-~ + L-‘NL-T. 

Since L-‘ML-T is symmetric positive definite, all of its eigenvalues are in ]a, 61, 
a > 0. The matrix L -‘NL-T is skew-symmetric and ah of its eigenvalues are on thle 
imaginary axis. Due to Householder 19, p. 791, the eigenvalues of L- “ALmT, and thus 
those of &?-“A, are in [a, b] * [-ic, ic]. I 

4.3. Approximate Inverse of A 

It is also possible to use some kind of incomplete Crout decomposition ] 15 ] as a 
preconditioning. Before we treat this important case in detail, we give the fo~~ow~~~ 
result. 

THEOREM 2. If A is an M-matrix and K is an incomplete Crout ~eco~p~s~t~~n qf 
A, then all eigenvalues of K-‘A have positive real part. 

Proof. The existence of an incomplete Crout decomposition K is guara~tced by a 
theorem of Meijerink and van der Vorst [ 151, who also prove that A = K - R &fines 
a regular splitting. From Varga [20, Theorem 3.121, it follows that KxiL I = Rx, $0 
converges for all x0, or p(K-lR) < 1. From p(K-‘R) = p(K-“(K -A)) := 
~(1 -M-IA) < 1 it then follows that all eigenvalues of K-‘A have positive real 
part. I 

Except for the first order derivative terms, Eq. (2.1) can be discretised by 5- 
central differences in such a way that the resulting matrix M 3s an ~rr~d~c~b~y 
diagonally dominant symmetric M-matrix (see Varga [20]). 

THEOREM 3. If the first order derivative terms of (2.1) are discretised by ce~tr~~~ 
dgferences and if the resulting contributions to the discretisation matrix are in 
absolute value smaller than the respective elements of M, then theBna1 discret~~~ti~~ 
matrix A is an M-matrix. 

Prooj From Varga [20, Theorem 3.41, it follows that I-D-%, where 
D = diag(A), is a convergent matrix. Applying Varga 120 Theorem 3.1 
A is non-singular, A-’ > 0 and thus A is an M-matrix. 

The contributions of the first order derivative terms can be made smaller than the 
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other elements by choosing the mesh sizes AX and dy sufficiently small. When the 
first order terms are discretised by either backward or forward differences, such that 
they add to the main diagonal of A, A again is an M-matrix, independently of the 
choice of Ax or Av. The proof is similar to the proof of Theorem 3. 

If we write the incomplete Crout decomposition of A as 

A=LD-‘U-R 

then a very simple decomposition is defined by the following rules: 

(4.1) 

(a) diag(L) = diag(U) = D-l; 

(b) The off-diagonal parts of L and U are equal to the corresponding 
parts of A; 

(4 2) 

(c) diag(LD-‘U) = diag(A). 

We will denote the decomposition defined in scheme (4.2) by the subscript 1: 
L I D; ‘U, , For the pentadiagonal blockmatrix of Section 2 this leads to the following 
recurrence relation for the elements di of D,: 

di=ai,3-ai-1,4ai,,d~~‘,-Ui_m,sai,ld~~’~. (4.3) 

For the case that A = M + N, where M is a symmetric M-matrix and N = TN*, 
scheme (4.2) can be used to compute all elements of D,; it can be proven that all of 
the di will be positive. Note that A itself is not required to be an M-matrix. However, 
when the elements of N are large then the factors L, and U, may be very ill 
conditioned, while A can be reasonably well conditioned. This ill-conditioning can 
eventually be prevented by a partial pivoting technique, which has the obvious disad- 
vantage of destroying the sparsity structure. 

Ill-conditioning can also be prevented by constructing an incomplete decom- 
position of A + (a - 1) * diag(A), with the constant (T chosen large enough. This is 
similar to what Manteuffel [14] proposes to do for the decomposition of symmetric 
positive definite matrices. 

In this case formula (4.3) changes to 

di =OUi,j -ai-l,,ai,~d~C’~ - Ui-m,5Ui,ldlr1m* (4.4) 

We will denote this “stabilized” decomposition by L,D;‘U,. If the parameter o is 
chosen so that the resulting di compare in magnitude with the sum of the off-diagonal 
elements in absolute value of L, and U, (those elements do not depend on o), then 
the resulting L, and U, are well conditioned. For the modelequation -u& - u& + 
/?(u; + u;) -t cu =f one can show that the di, for increasing i, rapidly tend to the 
largest root of 

d = Oai,j - ai-l,4ai,2d-’ - ai--m,5ai,,d-‘, (4.5) 

which makes it easy to determine the proper value of cr. We will call this value copt. 
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When A is a diagonally dominant M-matrix, then it is not necessary to incorporate a 
o for stabilization. Meijerink and van der Vorst [ I.51 show that the de~mposit~o~ in 
this case is stable. Manteuffel [ 141 shows that optimal convergence in the symmetric 
case (for the preconditioned cg-process) is achieved for c < 1.0. A similar result for 
the symmetric case is,published by Gustafsson [7], he, in fact, proposes different d[ 
for each diagonal element. 

Now the next question is how the convergence behaviour is affected by the 
parameter 0. Numerical experiments indicate that for the modelequation the rate of 
convergence of the Tchebycheff iteration with the preconditioning K = (LCD; r UO)-’ 
is minimal for (T in the neighbourhood of oopt. 

This is an embarassing result since D was only introduced in order to have well- 
conditioned factors. Apparently we should strive for decompositions where the: 
diagonalelements are at least comparable to the sum of off-diagonal elements in the 
factors. That suggests the following parameterless incomplete decomposition scheme. 
The off-diagonal elements of L and U are set equal to the corresponding elements in 
A, and diag(L) = diag(U) = D-i. Let CL,I = Ci>j laijl and Cc7,i = CiCj ]aij]. 

Then the kth step in the decomposition construction process is defined by 

(4 compute the kth diagonal element of D, using the relation 
diag(il) = diag(LD-‘U); this element is denoted by A,; 

04 compute LA and CU,L; 
(c) the kth diagonal element of D is now replaced by 

4 =maxvkY Cz,,k~ CU,kl. 

(4.6) 

The above-defined decomposition is denoted by L,,D,-,’ U,,. 
Since L,D; ‘U, includes L, D;‘U, we will in the numerical examples only 

consider L,D;‘U, and L,,D;dU,,, besides the preconditionings mentioned in 
Sections 4.1 and 4.2. 

We were not able to prove that in general all the eigenvalues of the preconditioned 
matrices are in the right half plane for the stabilized preconditionings. For a large 
number of problems we computed all the eigenvalues and they always happened to 
have positive real part. 

4.4. Eflcient Implementation of the Unsymmetric Preconditionings 
If we consider the computational cost per iterationstep of the preconditioned 

iterationprocess then we recognize that this is significantly higher than without the 
use of any preconditioning. As we know, we have to compute matrix vector products 
K-lx besides Ax for each iterationstep. 

Eisenstat [S] shows that the preconditioned conjugate gradient iteration for certain 
preconditionings can be implemented in such a way that the preconditioned 
iterationsteps are almost as cheap as the unpreconditioned ones. Eisenstat’s ideas can 
easily be adapted to the preconditioned Tchebycheff Iteration for the preconditionings 
as described in Section 4.3. We will give here a brief outline of how this can be done. 

Let LD- ‘U be either the L,D; ‘U, or the L,, DidUEQ incomplete decorn~~s~tiol~ 
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of A. We assume that A has been scaled such that D = Z, so we omit D in the 
formulas. 

The linear system Ax = b has the same solution as 

L-‘AU-‘Ux = L-lb. (4.7) 

Now we define A = L-‘AU-‘, 2 = Ux and 6 = L-lb, giving F& = 6. The Tchebycheff 
iteration for this equation, where the residual is now computed by a recurrence 
relation, looks like 

vfi=if-l + pi-13 (4.8.1) 

~i=r”i-l-a~i_,, (4.8.2) 

Bi = (a- (f)‘ai-,)-‘, (4.8.3) 

/Ji=a+ 1, (4.8.4) 

p”i=Bi~i+p^i~i-,. (4.8.5) 

We now simply replace (4.8.1) by 

(4.8. la) 

Now we consider &I?~_,: 

&-, =L-‘(L +A -L - U+ U) U-‘p”,-,. 

Since the off-diagonal elements of L and U are equal to the corresponding elements of 
A and since diag(L) = diag(U) = Z, this yields, if we write fi = U-‘Z?- ,: 

dpli-~=U-‘p^i_,+L-‘(p^i_,+(D-2Z)U-’p”i_,) 

=fi-1 +L-‘(p^i-1 + (D-2Z)fi-1), 

where D = diag(A). 

(4.9) 

Expression (4.9) can be inserted in (4.8.2) and we see that the cost of the precon- 
ditioned Tchebycheff iterationsteps has been reduced to almost the cost of the 
unpreconditioned iterationsteps. Note that the same reduction in computational cost 
cannot be achieved for the preconditionings described in Sections 4.1 and 4.2. 

5. NUMERICAL EXPERIMENTS 

The numerical experiments described in this section have all been carried out on a 
CDC-Cyber 175/100 of the Academic Computer Ce~ntre, Utrecht, in 48 bits relative 
working precision. The residuals in all experiments, as far as listed, have been 
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TABLE I 

Iteration Results for 5.1 with /3 = 4.0 

Method 
Number of 
iterations 

Final residual 

Initial residual 

Tchcbycheff iteration 
without preconditioning 

id. with L,D;‘U,- 
preconditioning, CJ = 1.0 

id. with L&&j U,,- 
preconditioning 

92 1.5,*-n 

2.5 9.1,,-, 

25 9.0,,-, 

computed as llAxi - bliz, where xi is the ith iterand in the iterative solution process 
for Ax = b. No efforts have been made to start the Tchebycheff iteration with good 
parameters d and c. This means that in most cases the first 20 iterationsteps were 
oniy used to get estimates for d and c, while sometimes the iterationprocess even 
diverged during these first 20 steps. Therefore the number of iterations gives mostly a 
pessimistic impression of the actual convergence behaviour. We have chosen this 
crude strategy because we believe that in most practical situations it is the only 
possible choice. However, if one has to solve a set of similar problems a proper deter- 
mination of d and c beforehand can improve the efficiency significantly. 

5.1. -u;, - 2& + p(u; + u;> + 24 = 1 
This simple problem has been chosen since it has been described extensively by 

Manteuffel [ 131 and since a number of properties can easily be verified (e.g., solution, 
eigenvalues, stability). 

The equation is discretised over a square region with gridspacing 1.0 in both 

TABLE II 

Iteration Results for 5.1 with p = 20.0 

Method 
Number of 
iterations 

Final residual 

Initial residual 

Tchebycheff iteration 
without preconditioning 

id. with L,D;‘U,- 
preconditioning, u = 2.6 

id. with L,,Dgi U,,- 
preconditioning 

200 6.5,,-, 

40 f&-9 

37 8.3,,-, 
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I 
-  

2.5 

FIG. 4. Ellipses for A and KA, for p = 20.0. 

The convergence factors rC associated with each ellipse are: 

I. for the A-ellipse: Y, = 0.918; 

2. for the M-ellipse: rc = 0.586. 

5.2. -u;, - z.$ $ p@L; + u;> = 0 

This problem has also been considered extensively by Manteuffel 1131. 
compares for this case the Tchebycheff Iteration, with dynamically estimated 
parameters, with some other iterative methods: 

(a) The bidiagonalisation method (Golub and Rahan [6], Paige [ 171). 

(b) The cg-method applied to AT,4 (Hesteness and Stiefel [8], Kershaw [I I]). 
For this problem the Tchebycheff iteration appeared to be superior for a wide 

variety of values of/?. 
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TABLE III 

Results for the Unpreconditioned Tchebycheff Iteration 

P 
Number of 
iterations 

Final residual 

Initial residual 
Number of iterations 
to gain one decimal* 

0.1 198 7.5,~~a 27.8 
0.4 200 l.l,,-, 40.5 
4.0 192 2.&-a 25.3 

20.0 200 4.1,,-, 31.3 
40.0 200 2.3,,-, 55.0 

* The number of iterations to gain one decimal is computed as nA”log(r,/rf), where rO, rf are initial, 
final residual resp. and n, is the number of iterations. 

Again the equation has been discretised over a grid with gridspacing 1.0, using 
central differences. For the resulting linear system consisting of 1600 (=40*) 
unknowns, the results of the unpreconditioned Tchebycheff iteration with exact 
parameters d and c are listed in Table III (for exact values of d and c see Manteuffel 
[ 13, p. 351). 

In Table IV we present the results of the Tchebycheff iteration with preconditioning 
(L,D;‘U,)-’ with optimal values for 0 determined as in Section 5.1. No efforts have 
been made to find optimal iteration parameters d and c, in each case they were 
initially chosen to be d = 1.0 and c = 0.0 and have been adjusted dynamically. 

From the results in the Tables III and IV we conclude that also in this case, the 
use of a suitable preconditioning, even with sometimes poor initial approximations for 
the parameters d and c, leads to a big improvement. Note that for small p (e.g., 
/I = 0.1 and 0.4) the value of the optimal CJ is less than 1.0. In this case the 
discretisation matrix is an M-matrix and although we introduced CJ only to prevent ill- 
conditioning, Manteuffel proved that optimal efficiency, in case of the cg-process with 
preconditioning, is reached for r~ < 1.0 (see Section 4.3). 

TABLE IV 

Tchebycheff Iteration with (L,D;‘U,)-‘-Preconditioning 

P uopt 
Number of 
iterations 

Final residual 

Initial residual 
Number of iterations 
to gain one decimal 

0.1 0.7625 47 7.0,,-, 6.6 
0.4 0.8 39 4.5,0-s 5.3 
4.0 1.25 15 2.$,-a 2.0 

20.0 3.25 48 8.8,,-, 6.0 
40.0 5.75 83 3.8,,-, 9.9 
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TABLE V 

Tchebycheff Iteration with (LEa D;l U,,)-‘-Preconditioning 

P 
Number of 
iterations 

Final residual 

Initial residuai 
Number of iterations 
to gain one decimal 

0.1 125 7.&,-o 17.5 
0.4 46 1.4,~~8 5.9 
4.0 15 1.7,*-s 1.9 

20.0 50 6.61,~, 6.1 
40.0 84 3.3,0-v 9.9 

In Table V we give the results achieved when the (k,aD,;:U,,)-‘-preconditioning 
is used (again with initial parameters d = 1.0, c = 0.0). We see that for small p, when 
A is an M-matrix and no actions need to be undertaken to prevent iii-~onditi~~i~g!, 
the (LEQD~~UE,)-i-preconditioning is less efficient, whilst competing with the 
(L,D;‘U,))‘-preconditioning for larger values of ,& 

For this problem we have also compared the effect of different preconditioni~~s as 
described in Section 4. The gridspacing is still 1.0, but the number of uuk~ow~s has 
been reduced to 961 (=3 1”). This particular choice was necessary to be able to 
include the Fast Poisson Solver in the comparison. The following pre~o~ditio~i~g~ 
have been chosen. 

(a) Fast Poisson Solver [2]. 
(b) The incomplete Choleski K,,, on the symmetric part [ 16, 191. 
(c) L,D;"U, with (T = oopt. 

The eigenvalues of the preconditioned matrix for (a) and (b) have always real parts., 
whereas we were only able to prove this property for (c) when p < 2.0 (see Section 4). 
The L,D; ‘U,-preconditioning can be implemented very efficiently, in contrast to 
both other types of preconditionings. We therefore have included the CP~-times in 
the tables in order to give an impression of the actual efficiency of the three different 
choices. The computational results are given in Tables VI, VII, and VIII. 

TABLE VI 

Iteration Results for ,!3 = 0.1. 

Preconditioning 
Number of 
iterations 

Final residual 

Initial residual CPU-time 

FAST POISSON 17 6.$,-s 0.88 
INC. CHOLESKI 34 7.410-a 1.02 
L,D,'U,,is= 0.1625 46 6.7*,-s 0.75 
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TABLE VII 

Iteration Results for p = 0.4 

Preconditioning 
Number of 
iterations 

Final residual 

Initial residual CPU-time 

FAST POISSON 58 5.7,0-s 2.8 
INC. CHOLESKI 35 4.8,,-s 1.0 
L,D,'U,,a=O.S 38 3.3,0-a 0.63 

For the case ,8 = 0.4 we have also plotted the ellipses containing the field of values 
for A, Pp’A, K;:A and (L,D;‘U,)-‘A, where P represents the inversion by the Fast 
Poisson Solver. The ellipses displayed in Fig. 5 (two of them are degenerated to 
straight lines) are derived from the results in the last dynamic estimationstep of the 
Manteuffel algorithm, usually performed after each 20th iterationstep. The respective 
values for TC are: 

1. A rc = 0.798; 

2. P-‘A r, = 0.624; 

3. K&;A rc = 0.538; 

4. (L,D,‘U,)-‘A rc = 0.343. 

5.3. -u,“, - qy + 
c 

au 
f (au) + a z 

)/ 
2=f 

This equation has been taken from Widlund [21]. Since only a first derivative in 
one direction (the x-direction) is present, it can be shown that the incomplete decom- 
position yields well-conditioned factors which implies that the L,D;‘U,- 
decomposition can be used as a preconditioning. The equation is discretised over a 
rectangular grid with equal gridspacings in both directions over the region 
[0, 1 ] * [0, I], and along the boundaries a Dirichlet boundary condition is imposed. 

TABLE VIII 

Iteration Results for /3 = 4.0 

Preconditioning 
Number of 
iterations 

Final residual 
_____ 
Initial residual CPU-time 

FAST POISSON 200 2.7,,-, 9.5 
INC. CHOLESKI 200 4.7,,-, 3.8 
L,D,'U,,u= 1.25 15 2.3,,-, 0.26 
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FIG. 5. Eigenvalue ellipses for /3 = 0.4. 

The function a(x, y) is chosen as 2 * exp(3.5(x2 + y’)), 20 * exp(3.5(xx2 + y”)), 
resp. The right-hand sidef(x, y) is chosen in such a way that u(x, y) = sin 71~ sin ny 
exp((x/2 i-y)“) satisfies the equation. No efforts have been made to estimate good 
Manteuffel-parameters, in each case they were initialised as d = 1.0 and 4: = 0.0. The 
results are given in Table IX. If we compare these results with those published by 
Widlund [21, Table 11, then it appears that our method is highly ~ompe~itive~ 
(remember that in each iterationstep of Widlunds algorithm a symmetric linear 
system (A + A ‘)/2 x = b’ has to be solved). 

TABLE IX 

Iteration Results for Discretised Linear System of (5.3) 

Finai residual 
Number of Number of 

4x3 Y) Method unknowns iterations Initial residual 
- -- 

2e3’5(x’tYv no precond. 225 200 4.9,~~2 
2e3.5w+Y? L D ' I ; U,-prec 225 29 2.1 10-f 
&J’WiY’) no precond. 961 200 
2e3.5(Xl+Y2) 

5.2,,-> 
L,D;‘U,-prec 961 41 3.1,,-8 

20~3’5’“‘+~~’ no precond. 225 200 2.9,,-, 
2()e’~s:x~+Y*) L,D;‘U,-prec 225 14 LO,,-9 
2()e3.5w~Y2) no precond. 961 200 6.5,,-, 
-&3’5W iY2) L, D;‘U,-prec 961 26 2.2,,-, 

581/44/l-2 



16 HENK A. VAN DER VORST 

5.4. -u;, - (1 +y2) uTy + u; + (1 + y’>u; = f 

This example has been taken from Houstis et al. [lo] and is chosen since the 
various derivative terms appear with unequal coefficients. The equation is discretised 
with an equidistant grid over the region [0, l] 8 [0, I], along the boundaries of which 
a Dirichlet boundary condition holds. The right-hand side, as well as the solution 
along the boundary, is chosen such that u = ex+y + (x’ -x)” ln(1 + y”) is the solution 
of the equation. In our experiments we have chosen no special initial values for the 
Manteuffel-parameters d and c (d = 1.0, c = 0.0). This implies that the first 20 
iterationsteps in most cases are required only for computing better approximations. 
This influences the number of iterations to gain one decimal as we have computed it. 
In order to get a better impression of the asymptotic speed of convergence we have 
also computed the number of iterations to gain 1 decimal in the following way: 

N* = (n2 - n J/ lo lo&,/r,), 

where n2 = the number of iterations to reach a residual less than i. - 6, rz = the value 
of the n,th residual, and n, and r, analogously corresponding to a residual less than 
,o - 3. The results are summarized in Table X. 

5.5. Discretisation of First Order Terms by Backward/Forward Differences 

The matrix that arises from standard 5-point discretisation of the second order and 
linear terms in the partial differential equation is a diagonally dominant symmetric 
M-matrix. If the first order derivative terms are discretised by backward or forward 
differences depending on the sign of the functions G(x, y) and H(x, y) (see Section 2) 
in such a way that the contribution to the diagonal elements in the discretisation 
matrix is ,positive, then the resulting matrix A is a diagonally dominant non- 
symmetric M-matrix (see Section 4). According to Meijerink and van der Vorst [ 151 
an incomplete Crout decomposition K exists, the factors are well conditioned and due 
to Theorem 3 all the eigenvalues of the preconditioned matrix K-‘A have positive 
real part. In this case we can safely use Tchebycheff iteration with L,D;‘lJ,- 
preconditioning. A disadvantage of the forward/backward differences is that the 

TABLE X 

Iteration Results for the Discretised Linear System of (5.4) 

Method 
Number of Number of 
unknowns iterations 

Final residual 

Initial residual N* 

no precond. 225 80 2.3 LO" 
INC. CHOLESKI 225 25 l.l,,-, 2.18 
L$D,'U,,a= 1.0 225 38 2.0,,-8 3.14 
no precond. 841 299 1.6,0-s 40.2 
INC. CHOLESKI 841 36 9.2,o-9 2.92 
L,D,'U,,o= 1.0 841 45 9.110-9 3.05 
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TABLE XI 

Iteration Results for the Discretised Linear Systelri of (5.5) 

Backward differences Central differences 

Final res. Final. res. 
No. of No. of -~ Discr. Noof -~ Discr. 

a unknowns iterations Init. res. error iterations Init. res. Hi-OF 

.&3.5(X%P) 225 31 I.l,@ 0.252 29 2.110-s 0.219 
-&3.5&Y” 961 49 3.0*,-s 0.169 47 3.l,,_, 0.059 

20e3, 5(.x2 + !A 225 19 1.2,,-9 0.238 i4 2.0,@ 0.512 
2oe3.i(.r~+Y’~ 961 30 2.2,u-9 0.167 26 2.2,,-9 0,066 

discretisation error is of lower order than when central differences are applied We 
will not discuss here the arguments for a choice between central or ba~kward/forwa~~ 
differences, we only consider the effects of the preconditioning for both cases. 

We present here the results achieved for the equation -u’& - U$ + ((~/~~)(~~) + 
a(~u/~x>)/Z =f, which has been discussed in Section 5.3. 

For given function a, the function f and the Dirichlet boundary conditions have 
been chosen in such a way that the solution is 

For both backward/forward and central differences we have corn 
discretisation error as the maximum of the absolute differences of the discretised 
solution and the exact solution on the gridpoints. 

The results are given in Table XI. In all cases the L,D;‘U,-preconditioning has 
been used. 

6. CONCLUSIONS 

The major conclusion is that the Tchebycheff iteration with suitable 
ditioning can be an efficient solutionmethod for a class of problems. From th 
and the experiments we conclude that for linear systems coming from pde’s where the 
first order terms contribute only little, a preconditioning constructed by ~n~orn~let~ 
G-out decomposition is a good choice. If the matrix is nearly symmetric then a Fast 
Poisson Solver or an incomplete Choleski decomposition for the symmetric 
be helpful. 

If the first order terms are dominant, e.g., preventing the matrix to be an ~-mat~ix~ 
then incomplete Crout decomposition by itself fails due to ill-condi~io~i~~ of the 
factors. However, this can be repaired by introducing a parameter in order to 
stabilize the decomposition (Section 4.3). In practical situations the ~ar~rn~ter~ess 
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decomposition L,, 0;; UEn, see Section 4.3, scheme (4.6), may be a very good alter- 
native, although sometimes some efficiency might be lost as compared to the 
parameter version. The Eisenstat implementation as described in Section 4.4 deserves 
special attention, making essentially the preconditioned Tchebycheff iteration almost 
as cheap as the unpreconditioned one per iteration for the preconditionings described 
in Section 4.3. This possibility is lost for the Fast Poisson Solver and the incomplete 
Choleski decompositions mentioned above. Of course it is also possible to construct 
more elaborate incomplete Crout-decompositions of a given matrix, as described by 
Meijerink and van der Vorst [ 161. Their use decreases in general the number of 
iterations, but since they take more memory and more computational cost per 
iteration and since the Eisenstat implementation cannot be used for them, it is 
uncertain whether they really can compete (see also van der Vorst and Van 
Kats [ 191). 
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